Osteogenic growth peptide increases blood and bone marrow cellularity and enhances engraftment of bone marrow transplants in mice.

نویسندگان

  • O Gurevitch
  • S Slavin
  • A Muhlrad
  • A Shteyer
  • D Gazit
  • M Chorev
  • M Vidson
  • M Namdar-Attar
  • E Berger
  • I Bleiberg
  • I Bab
چکیده

The osteogenic growth peptide (OGP) was characterized recently in regenerating bone marrow (BM) and normal serum. In vitro, the OGP regulates stromal-cell proliferation and differentiated functions. In vivo, an increase in serum OGP accompanies the osteogenic phase of postablation BM regeneration. The present results in normal mice show that OGP induces a balanced increase in WBC counts and overall BM cellularity. In mice receiving myeloablative irradiation and syngeneic or semiallogeneic BM transplants, OGP stimulates hematopoietic reconstruction and doubles the survival rate; these effects are dependent on initiating the OGP administration before irradiation. Chimerism measurements in semiallogeneic graft recipients suggest no preferential effect of OGP on residual host cells. The data implicate OGP in the acceleration of hematopoiesis secondary to expansion of the stromal microenvironment and/or enhancement of stroma-derived signals to stem cells. The low-dose effectiveness of OGP is explained by the demonstration of an autocrine positive feedback loop that together with the OGP-binding protein sustains high serum levels of the peptide. A potential OGP-based treatment in combination with chemoradiotherapy is attractive because of the OGP-induced balanced multi-lineage enhancement of hematopoiesis and possible replacement of expensive recombinant cytokines by a readily synthesized peptide.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...

متن کامل

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

The osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells

Objective(s):Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed   to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concen...

متن کامل

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

A synthetic CD4-CDR3 peptide analog enhances bone marrow engraftment across major histocompatibility barriers.

The efficacy of a synthetic peptide analog mimicking the CDR3-D1 domain of the CD4 molecule was investigated in murine models of allogeneic bone marrow engraftment after transplantation across major histocompatibility complex (MHC) barriers. A single dose of a CD4-CDR3 peptide analog was administered at the time of marrow transplantation to three different allogeneic mouse strain combinations a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 88 12  شماره 

صفحات  -

تاریخ انتشار 1996